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ABSTRACT

A model is developed for relating continuous review

L inventory policies for repair parts to system availa-

3 bility. The system consists of S identical unit systems,
each of which 1s a series of k-out-of-n structures. Unit
system states are zero or one. An optimal cannibalization
policy is assumed. Under this assumption the number of unit
systems up is always the maximum possible for any given
vector of backorders for the N pért types in the system.
The distributiion of backorders under a (Q,r) policy with
Poisson demands for each. Part type is used to derive
expressions for system availability as functions' of the

Q, r vectors. For simplicity it is assumed that order
qualdtities are set by an opet¥ating level in terms of days

of supply. A numerical technigqué is presented for finding

the vector of reorder points (safety levels) which mini-
mizes the expected cost of on hand inventory subject to one

of two alternativz availability constraints.
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I. INTRODUCTION

A. BACKGROUND

In the management of logistic support for weapons
systems a significant problem in resource allocation is
the determination of optimal inventory policies for repair
parts. Inadequate stocks of repair parts result in low
system availability. Stocks sufficient to insure with
high probability that any part will be immediately avail-
able when needed my tie-up more resources than are
justified.
. Ln indication of the concern of the logistics manager
with this problem is the following statement from the
revised General Objective No. 1 for the Navy Supply Systems
Command: "For technical material, optimum support is that
which minimizes downtime of weapons sysStems due to lack of
repair parts and components." [Ref. 1] In order to accom-
‘plish this objective, techniques are needed for relating
repair parts inventory policies to weapons systems
availability.

The mathematical models designed to deal with the impact
of repair parts shortages have usually been formulated as
a minimization of total cost, where the total cost includes
ordering, holding, and backorder costs. In theory the
backorder costs are a measure of the impact of shortages on
system availability. A difficulty in practice is that

backorder costs are hard to estimate. One technique for

11
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finding a value of the shortage cost is to impute it based

on a requirsd maximum probability Pout of being out of

stock: See Deemer and Hoekstra [Ref. 2, p. 5) for a dis- -
cussion of this technique. The required value of Pout is

determined by management judgement. This judgement pre-

sumably includes some intuitive consideration of the effect

of repaix parts shortages on system availability.

The fotal cost minimization formulation does not, Low-
ever, permit any direct correlation of inventory policies
and system availability. Inventory policies computed using
that formulation are determined for each part independent
of all other parts. System availability is, however, a
function of (Q,xr) = (Ql,rl),...,(QN,rN). Therefore, if !
we wish to correlate inventory policies to system avail-
ability, we need a multi-item model rather than one which
deal§ with each item one at a time.

There do exist a humber of techniques for explicitly
correlating systen. availability and single period inventory
policies. One of ‘these is the optimal redundancy approach
discussed in Chapter 6 of Barlow and Prochan [Ref. 3]. The
problem discussed there is one where at the beginning of
the period there is a quantity nﬁ of .each part type j
on hand, and resupply is not avaiﬂable until the end of
the period. The object is to deiermine the value of each
nj so that system availability is maximized subject to .
some cost constraint or, alternatively, to minimize the

cost of achieving a required availability. The cost of the

12
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parts inventory may be interpreted as dollars, weight,
volume or some other measure of the amouat of a "xesource"

which is used up by the .inventory.

B. GENERAL NATURE OF THE MODEL

The approach taken here is to apply the redundancy
optimization ideas to a continuous review inventory sit-
uation. In particular the model addresses the problem
of optimal parts inventory policies in support of a weapons
system at the direct support echelon. The objective
function to be minimized is the expected cost of on hand
inventory. The constraint is a system availability re-
quirement, which may be in one of two alternative forms.
The first is that the expected number of unit systems up
must be greater than or equal to a required fraction of
the total number Of unit systems. The second form of
the constraint is that the probability that at least Xk
unit systems are up must be equal to or greater than a
required assurance Jdevel.

The model is &n idealization of the repair parts
supply support furnished by the direct support maintenance
unit for the population of a particular major item in an
operational Army unit. The system consists of S identical
unit systems, which might be tanks, aircraft, howitzers,
or some other set of equipments of the same make and

model.

13
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C. .ASSUMPTIONS OF THE MODEL AND THEIR IMPLICATIONS

Before turning to the formal description of the model

we shall discuss some of the important assumptions and

their implications here.

.

B I L PP N RV

1. The Inveritory System is Single Echelon
To simplify the problem we assume that the supported '
military unit does not carry a stock of repair parts, but
that parts are immediately available from the direct support
maintenance unit if theke is stock on hand at the time a

demand occurs. The inventory system thus is single echelon.

2. Procurement Lead Time is Constant

The prqcuremeht lead time (order and ship time) is
assumed to be constant for each part type;. where part type
indicates a”parﬁiculgf7Federal Stock Numbef. Lead times may; '
hcwever, be different for different part types. We further
assume that tﬁe source .of supply is never out of stock.
Thus, the model ignores variability of lead times and the
possibility of reéducing lead times by using a higher requi-
sition priority.

3. Unit System State Values are Zexo or One

The supported system consists of S identical unit
systems, Each unit system is assumed to exist in one of
exactly two states depending upon the states of the in-
stalled parts: either it is up, i.e., it is fully capable
of cperating satisfactorily; or it is wn, i.e., totally
ineffective. This assumption means tha- :the possibility

that the unit system may be partially effective is not

14
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considered. Actual equipment does exist .n partially
effective states. For example, if the 50-caliber machine
gun on a tank is not working, the capability of the tank

is reduced in some of its roles, but it is obviously not
totally ineffective if all other components of the tank

are working., The zero-one assumption is made for mathemati-
cal simplicity. The two state categorization is not too
different from the equiprmient serviceability code (ESC)
ratings currently used within the Army for determining the
materiel readiness of Army units., Possible ESC ratings are
green, meaning fully operational and capable of operating

in combat for 60 days; amber, meaning fully operational and
capable of operating in combat for 30 days; and red, mean- _
ing not fully operational. We have simply dropped the a@ber

category.

4. Component Part State Valueg are Zero or One
Similar to the zero-one assumption for each unit
system two possible statés are assumed for each installed
part: either it is working or it has failed. Thus the
part is 100 per cent effective or totally ineffective.

5. The Unit System is a Series of k-out-of-n Structures

As mentioned in Section 3 above, the state«of)g
unit system is determined by the states of its component
parts. If there are aj, parts of type J initially
installed on each unit system, it is assumed that thcre is

a number bj equal to or less than aj such that at least

bj parts of type J must be working if the unit gystem is

15
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to be up. If the number of working type Jj parts is less
than bj' the unit system will be down. Further we assume
that, if the number of working type Jj parts is equal to
or greater than bj for all j, then the unit system will
be up. These assumptions may be summarized by saying that
the unit system is a series of k-out-of-n structures, as
defined by Birnbaum, Esary and Saunders [Ref. 4, p. 58].
Oux bj corresponds to these authors' k and our aj to
their n.

6. The Number of Unit Systems Up is the Minimum of the
Number Up with Respect to Each Part Type

If Z is the number of unit systems up at some
arbitrary time and Zj is the number which would be up if
all non-working parts other than type Jj were replaced
by working parts, then 2 1s called the state of the
system, and Zj is called the state of the system with
respect to part type j. We assume that at any time t the
state of the system 2 equals the minimum over j of the

2. |
J

7. An Optimal Cannibglization Policy is Ob§efved
Perhaps the most signifiéant assumption of the model
¢ .veloped hexe is that a policy of optimal cannibalization i
is observed. By optimal we mean that given any vector

i

il

(w ,...,WN), where Wj denotes the number of working

parts of type Jj, after the -cannibalization operation the

maximum possible number cof unit systems will be up. The
mathematical structure of the supported system is an

adaptation of the 4dtructure of the cannibalization model of

16 ‘
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Hirsch, Meisner and Boll ([Ref. 5]. The reason for using
this structure is that, given any vector Y = (Yl,...,YN),
where Yj denotes the number of backorders of part type

j, there is a unique number systems up. This would not be
the case if cannibalization were not allowed. Consider,
for example, a system in which each unit system has two
parts of type j installed, and both of these must be
working if the unit system is to be up. Suppose there are
two backorders for this part type. This means that there
are two non-working parts of type 3j in the system. If

one of these were on one unit system and the other were

on a difiterent unit system, then the number of unit systems

‘down for this part type would be two. If, however, both

were on one unit system, then only one unit system would
be down for this part type. Under a policy of optimal
cannibalization there would always be only one unit system
down for this backorder situation. Since the probabilities
for the number of systems up used in this model are com~-
puted based on the probability distributions of the Yj’
the cannibalization assumption is an essential feature of
the model. The degree to which cannibalization is actually
used to increase system availability in practice depends
upon command policy and the practicality of taking parts
from one unit system to make another operational. If the
supported unit is spread-out geographically, it may not be
feasible to cannibalize., Also the maintenance effort in

removing and replacing parts under the cannibalization

17
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operation may overload the capability of the maintenance
organization. Nevertheless, some cannikalization may be
the best strategy for optimizing system availability when
there are constraints on the quantities of repair parts
the maintenance unit can carry.

8. The Demand Distribution for Each Part Type is Poisson

The demand distribution for each part type is assumed
to be Poisson with mean equal to the product of the failure
rate for the part type times the number of parts of that
type in the system. The failure rate of each part type is
assumed to be the same in all of its applications. The
Poisson assumption implies that the mean time between
failures of a given part type is exponentially distributed.
It is true that the exponential distribution may be a poor

fit for the mean time between failureswhere an individual

part is installed and replaced with a new part of the same

type immediatcly upon failure, particularly when the part

is subject to wearout, Cox [Ref. 6, p. 77} indicates how;
ever, that the pobled output of a number of renewal processes
tends to have the properties of a Poisson process as the
number of renewal processes being pooled gets large. Con-~
sequently, the Poisson assumption may be a good approximation
when the total number of parts of a given type in the

system is large. Another implication of the assumption is

that the distribution of demands is not affected by the

*
number of unit systems down. This in turn implies that ap,

inoperable unit system continues to generate part failures

18




= ~ai oy

Lt SRR Lanaie § Pt e

even after it has gone down. Errors introduced by this
assuwption will not be too great if the availability rate
is reasonably high or if failure rates are estimated on
demand histories over a period when the availability rate
was about the same as the required availability rate for
the period for which inventory policies are being computed.

9., Demand Rates are Linear with Activity Levels

The parameter in the demand distribution is assumed
to be a time rate. As discussed by Soland [Ref. 7, p. 45],
the natural parameter of the demand process may be miles
driven, rounds fired, or some other measure of the usage
or activity level of the system. The device used in the
model to account for this fact is an "activity level™
multiplier La for the pooled demand rates for each part
type. Suppose, for example that rounds fired were the nat-
ural parameter for the demand procesé: Further suppose
that a certain number of rounds were fired on the average
by each unit system per month during the period when
demand data were accumulated for estimating failure rates.
Now suppose that during the period for which inventory
policies are being computed that the programmed number of
rounds per ﬁnit system per month is doubled. Then the La
would be two, and the failure rate estimates for each part
type would be doubled. Use of this device assumes that
failure rates are linear with the level of usage. This
assumption is not in general true, but any more realistic

means of handling this problem would complicate the model.

19
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For part types nct subject to aging, ‘this assumption is
probably fairly good.

10. Parts are Replaced Immediately upon Failure

This model assumes that each part is replaced
immediately upon failure with zero replacement time if
a spare part is on hand at the time of failure., Also, if
backorders exist for a particular part type, the failed
part will be installed immediately upon receipt by the
maintenance unit. Of course, these assumptions are not
true in the "real world." To account for the fact that

repair times are finite the following procedure could be

.used. First estimate the availability which we would

expect to achieve if there never ware any shortage of repair
parts, Call this estimate the availability with respect

to maintenance. Call the estimated availability prédicted
by this model the availability with respect to supply
support. Then by taking the product of these two estimates
we should have a fair estimate of the overall availability
to be expected given the inventory policies and the repair
capabilities of the maintenance unit. In any case, the
reader should keep in mind that availability values computed
with this model need to be corrected for down time due to

non-zero repair times.

20




II. MATHEMATICAL MODEL

A. FORMAL DESCRIPTION OF THE SYSTEM STRUCTURE

The system consists of S identical unit systems. On
each unit system k there are n loci where parts are
installed. Let the Aki denote the ith locus on the kth

unit system and let the set

n
A, = {2}
k ki i=1

denote the set of loci on the kth unit system. Let the set

S

h=t)

)
=1 k

denote the set of all loci on the S unit systems. Let
Xy s be a random variable indicating the state of the ith

locus on the kth unit system, such that

in 1 if locus Axj contains a working part of
the type required in that locus,

0 if locus Ay; fails to contain a working
part of the required type.

Now X, = (Xq/s.../% ) is a vector of zeros and ones which
describes the state of the kth unit system. The possible
values of X, correspond to the vertices of the unit cube
in Euclidan n-space. Let ¥, denote the set of all pos-

n

sible values of Xy The size of ¥y is 2, Let the

.
e

random vector
2’: = (,}_(_li-.--l?_{_S)

21




be an nS~component vector indicating the state of the

entire system. Let x denote the set of all possible

values of X. The size of ¥ is 2ns. Let the set
n
¢ = {FSN.}
J =1

represent the set of different part types installed in the
n loci of each unit system. -Further let G(FSNj) be the.

subset of Ak which has as elements all those loci requir-

ing part type FSNj. It is assumed that if locus AkieG(f‘SN:ll),

then X5 = 1 if and cnly if a working paxrt of type FSNj
is installed in that locus. This assumption implies that

different FSN's are not substitutes for one another. Let

5 i.e., the number of applications

of FSNj on each 'unit system is aj. Assume that for each

the size of G(FSNj) = a

'j there exists a number b. such that

1, 1 <b. < a,;
— J Jl

2, If thé number of working parts of type FSNj in-
stalled on unit system k is equal to or greater
than bj' the unit system will not fail due to
FSN.;

JA

3. If the number of working parts of type FSNj in-
stalled on uvnit system %k is less. than b,, the
unit system will fail due to FSNj; and

4. bj is independent of bi for all 1 # j.

Let the state of the unit system with respect to FSN4,

denotéd Ukj’ be defined as the state in which all loci

22
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not in the set G(FSNj) have working parts installed.
In other words Ukj describes the state of the unit
system if FSNj were only part type subject to failure.

If ij is a random variable indicating the number of

werking parts of type FSNj installed on unit system k,

then

1l if w > b.

ki = 73’

c
It

kj

. o == ) otherwise.

»

Now let the state of the system with respect to FSNj}-

S N

denoted Zj' be defined- as L U .. 2. indicates the num=~

k=1 KJ° ] ;-

ber :of unit systems which would be operational for a giveq
set of values of ij, k =1,...,5 2f the only fallable ‘
part type were FSNj.

For a 'given value of the system state vector X it

may be possible to increase the value of Z by cannibali-

zation. We assume that for any value of X cannibalization

will be effected in such a way that the maximum value of 2
for that X will be achieved. See Hirsch, Miesner and Boll
[Ref. 5, p. 336-342) for a detailed description of the
cannibalization cperation for the type of structure being
discussed here, Let 2* denote the state of the system
after an optimal cannibalization, and let Z§ denote the
state of the system.with respect to FSNj under a policy
of optimal cannibalization.

Note that Zg may be considered to be a function of

Wj the number of working parts of type 3j, since Z§ is

23
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- the value of the number of operational unit systems after

an optimal cannibalization when the only part failures are

at those loci associated with part type j. It is assumed
that Zg(wj) is a monotone non-decreasing function of Wj.
Let K(Wj,z) denote the set of values of the number of

working éarts Wj such that the value of Zg ‘is at least

as great as 2z, 1i.e.,

K(W. = {W.: , < W, £ Sa. d 2% . 2},
(WJ,z) { 5 0 < g < aJ an J(WJ) 2z}

Note that

‘K(Wj,O)CK(Wj,l)C. . .C‘K(Wj,S)CK(Wj,S-I-l) v =1, 000N

and- sirice max Zg S,

i}

K(W,,S5+1) = ¢ .

The largest Vvalue of 2z such that K(Wj,z) # ¢ is 8.
Further note that the minimum value of W, such that 2
Zg =z is zbj since bj is the minimum number of part
tupe J needed on each unit system if that unit system is

to be operational, in symbols

zbj = min {wj: wjeK(Wj,z)} .

Let Kex be an arbitrary set where x is th2 set of all

system state vectors X. The indjicator function Iy is

defined for all K and X a5 follows

Ip(X) = 1, if XeK,

0. 4 if‘ &kK L

24
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Now let us use the symbol {wj > zbj} to denote thé set of

all X such that Wy 2 zbj,

Hirsch, Meisner and Boll show (using somewhat different

i.e., {Xex: wj(g) 2 zbj}.

notation) that if 2* = min 2%, then
J

S N

I = I n I

o = N B {w, 2 zb.} ’
j=1

k=1
and the authors call this the "representation theocrem" [Ref.
5, p. 349]. If S =1, i.e., we have only one unit system
then 2* = U, and U =1 if and only if each one of the

indicators I{w =b .} is equal to 1. The structure of

the unit system in this model is thus a coherent structure

in the definition of that term given by Birnbaum, Esary and
Saunders [Ref. 4, p. 61]. Further each unit system may

ke considered to be a k-out-of-n structure with respect

to each part type 3j, where a k-out-of-n structure is one
which has n parts of a single type and is operational if
and only if at least k out of the n parts are working.
Also, we can consider each unit system to be a series system

composed of N k-out-of-n structures, where the k's are

the bj's and the n's are the a.'s.

B. CORRELATION CF INVENTORY POLICIES AND SYSTEM AVAILABILITY
Consider now the effect of inventory policies on the

expected value of the number of operational unit systems

E(Z). If there were an infinite number of repair parts of

each type available, the value of X would always be
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l=(,1,...,1), since it is assumed that each part is

replaced immediately upon failure as long as spares are

available, and the state of the system 2 would always

be S. There are in fact various constraints on the ability

of the support unit to carry inventories of parts. The
result is that from time to time demands will occur for
which no replacement part is immediately available. For
any state vector X, denote the state vector after an
optimal cannibalization as X* and the value of Z after

cannibalization as 2*. Then

_}_(_*(t) = (}{'i'l(t).liﬁ'lxg"n(t))l t 2 01

is a stochastic process where for each fixed ¢, Xps is

a random variable taking the values zero or one. Now for

" each subset. K of ¥ the set of possible values of X,

let P, (K) denote the probability that X*(t) is an ele-

ment of, the set K, ie.,

P (k) = Pr{X*(t)eK}, XCx .

As shown by Hirsch, Meisner and Boll the probability
distribution ‘defined above concentrates all of its mass on
the set-of maximum points- MX’ which are the possible
vectors X*, the state vectgf after an optimal cannibali-
zation. Any vector X in which the number of working
parts of each type is given by the vector W can be
transformed into another vector X' which has the same

value of W. Thus, since an optimal cannibalization yields
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the maximum value of the system structure function 2 for
a given state vector X, there is a unique value of the
state of the syster after an optimal cannibalization 2¥*
for each value of the vector W = (Wl,...,WN). The set of
all X corresponding to a given W vector is called an

equivalence class, and the set M is a subset of this

X

equivalence class where 2 as a function of X takes its
maximum values over the equivalence class. We denote each
X in M, as X*. To describe the variation in time of

the system state function 2, set
2% (t) = Z(X*(t)), t 2 O,

and we note that the probability distribution of Z*(t) is

given by

Pr{z*(t) 2 z}

Pr{z* (x*(t)) 2 z}

P {X: 2*(X) > z} .

Let Wj(t) represent the number of working spares of

type J at time t. Under the assumption that 2* = min 2%,
J

we have immediately from the representation theorem that

S S N

k=1 (Ii\ {wj(t)akbj} k=1 j=1 (Wj(t)?_kbj}
j=1

Assume that

1. For each index 3j =1,...,N, the loci in which

parts of type FSNj occur are indistinguishable in their

27
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effects on the lifetimes of the parts installed in them,
i.e., the failure rate at each instant of a given part type
FSNj does not depend on the locus in G(FSNj) in which
the part is installed, nor on the particular sequence of
loci through which it has passed.

2. Parts operate independently, i.e., the lifetime of
a given part is not relatéd to the lifetimes of any other
parts. These assumptions make it reasonable to ‘postulate
that the joint distribution of (Wl(t),...,WN(t)) does not
depend upon the particular cannibalizations involved in the
process {Z*(t), t > 0 and that the N stochastic pro-

cesses
Wﬂﬂ,tzOLw”,WMU,tzM

are mutually independent. Thus the expectéd number of unit
systems up under optimal cannibalization at time t,

E{2*(t)), is given by

S N
k=1 §=1  (W5(t) 2 kby)
S N
= ¢ T Pr{w,(t) >kb.}.
k=1 j=l ] J

Further, the probability that 2*(t) equals at least z

is given by

Pr{z*(t) 2 z} =

; Pr{Wj(t) > zbj}.

==

1
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Now let Yj(t) be a random variable denoting the number
of backorders for part type FSNj at time t. Under the
assumption that every failed part is replaced immediately

by a working part from the inventory of spares, we see that

Wj(t) = Séj - Yj(t)

and
. 2. . = ., -~ R R = R < -} S 2N
{w, (£) kby} {sa -~ v (t) z.kbj} {¥ (t) < say-kby}
Hence
N
Pr{z*(t) 2 k} = 1 Pr{y.(t) 2 Sa. - kb.}
j=1 J J J
and
S N
E(Z*(t)) = I r Pr{y.(t) > Sa. - kb.}.
k=1 j=1 J 3 *

We assufe that the inventory system is continuous review
with a (Qj,rj) policy for each FSN, where Qj denotes
order guantity and rj denotes reorder point. We also
assume the lead time demand is Poisson distributed. Hadley
and Whitin [Ref. 8, p. 184] show that under a (Q,r) policy
when the lead time demand is Poisson with parameter pT
that the probability that there are y backorders at an
arbitrary time t under steady conditions may be derived
as follows. The inventory position, IP, is defined as the
stock on hand plus stock on order minus hackorders. The
IP varies between 1r+l1l and xr+Q, where r is defined in

terms of the IP. Further, Hadley and Whitin show that the
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i probability that the IP is in any state r+j, j=1,...,Q

: is 1/Q. Thus if the inventory system is in state r+j at
: time t-t1, the probability of y backorders at time t
equals the probability that y+r+j demands occur during
the period (t-t) to t for y>0. The probability that

i y=0 1is the probability that the demand during (t-t,t)

is less than or equal to r+j. Hadley and Whitin do not
make this distinction for y=0; consequently, the formula
they derive is not valid for y=0. When 0 is substituted
for y in the expression they derive the resulting value

is the probability that y=0 and on hand inventory = 0.

‘Terms for the probability that y=0 and on hand‘ihventory

is greater than zero are left -out of their expression. The

expression liadley and Whitin derive is

Q y+r+Q
< . (1/Q) & plytr+jiet) = (1/Q) 2 p(u;pt)
- j=1 u=y+r+l

<
I

(1/Q) [P (y+x+l;pT) -~ P(y+r+Q+l;pt)],

where p(u;pt) is the Poisson probability mass function with
* ' parameter pt at the point u for u=20,1,2,...; and
| P(u;pt) = vgu p(v;pt) 4is the Pocisson complementary cummulative
distribution function. The above expression is valid y
greater than zero. For y =0,
Q rt+j

y(0) = (1/Q) X I pluipT)
j=1 u=0
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Q
(1/Q) I [l - P(r+j+l;p1)]

j=1

I

Q
1 - (1/Q) I P(r+j+l;peT).

j=1

We assume that the pooled demand rate pj for all

parts of type j is given by

where L, is the activity level multiplier discussed in
Section I, S is the number of unit systems, ay is the
number of applications of part type 3j on each unit system,
and Sj is the failure rate for part type j when L
is one,

Let Tj be the procurement lead time for part type Jj.
Demand is' assumed to be Poisson distribﬁtedeith parameter

pjTj' Thus in terms of wj(yj),

Saﬁ“kbj

Pr{z*(t) 2k} = & Yolys).

J v.=0 173

J

Also since Z*(t) = min Zg(t) and the yj are assumed

J

to be independent, the probability that 2Z*(t) is equal

to or greater than k is “Tme probability that each Zg(t)

is equal to or greater than k, 1i.e.,

, a4-kb.
Priz*(t) 2k} = I T J by (yy)-

N Say
j:l y.=

0
J
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Now the expected value of a non-negative integer random
variable is the sum from 1 to « of the complementary

cumulative probability function; thus

E[2*(t)] = ; {Pr z*(t) 2 k} = g Pr{z*(t) 2 k},
k=1 k=1

since the probability that 2*(t) is. greater than S is

Zero. Therefore, the expected value of the number of

operational systems in terms of the probability mass

functions of the backorders for each part type is:

‘ S N Saj"‘kbj
Ef2¥(t)] = I n z wj(yj),

k=1 j=1 yj=0
where:
ys) = Ar.+l) - P(y.+r.+Q.+ .
¥y (ys) (1/Q) [P (yJ ry 1) (yJ X5+Qy 1)1, for ¥4>0,
and
’ Q
Y.(ys) =1 - (1/Q) I P(r.+m+l), for y. = 0.
J] m=1 J ]

The problém of optimum inventory policies may be formulated
as the minimization of the expected cost of on hand inven-
tory subject to one of the following constraints: £first,
that the expected number of operating systems E(Z) must
be égual to or greater than some required fraction of the
total number,or, second, that the probability that at least

k of the unit systems are operational must be equal to or
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greater thah a minimum assurance level. The expressions
used to relate inventory policies and these constraints
are those developed above Sor E(2) and Pr{Z 2 k}. Note
that since the expressions refer to "steady state" con-
ditions, and since optimal cannibalization is always
performed, the symbol 2 will be used henceforth in lieu
of 2*(t) and 2 will indicate the "steady state" random
variaple 2*(t).

It turns out that for part types with low demand rates
the optimal policy under the formulation of the problem
indicated above is not to stock these low demand items
at the direct support level, but to order them from the
source of supply as demands occur. If this %s tﬁe case,

r will be set to -1 and Q to l. This meéps that an
order is placed as soon as a failure occurs. In this
situation the distribution of Yj reduces to the Poisson
distribution with parameter pjrj,Asince the inventory
position is always equal to zero, and there is, therefore,
only one state for the inventory position. Hence the
probability that there are exactly yj backorders’at any
arbitrary time is p(yj;pjrj).

It is interesting to consider what would happen if
pjTj were small for all N part type€s, and no stock were
carried at the direct support level. Assume that each part
type were always available from the source of supply with

a procurement lead time of Tj, a constant, which might be

different for different part types. Now, if no parts are
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carried at direct support level, but are ordered only when

demands. océur, i.e., rj = —11~Qj = 1 for all j, then

S Sa--kbj
(P‘r{Z 2 k} = 11 z

= Yj=0 p(yj;pjtj):

and

E(Z) = I n z p(yj;pjrj).

k=1 j=1 yj=0

The values of the above functions can be used to estimate
the lower bounds for (E(2Z) and Pr{2z >k}, when demand

rates and procurement lead times are pa,rj, j=i,...,N.
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III. OPTIMIZATION TECHNIQUE AND NUMERICAL ANALYSIS

A. THE COST IFUNCTION
The objective function to be minimized is a cost

function of the following form:

N
E(C) = I C.D(Q.,r.).,
j=1 J S R |
where
E(C) = Expected cost of on hand inventory in
dollars, cubic feet, pounds or some
other measure of a resource in short
supply,
Cj = The unit cost of part type 3,
D(Qj,rj) = The expected on hand inventory of part

type 3j, given order quantity A.
and reorder point «r.. J

J

If E(C) 4is in dollars, the above function gives the
expected amount of funds tied wup in repair parts inventory
for the sSystem at the direct support echelon. If E(C)
were in pounds the function might represent the expected
amount of lcad carrying capacity of the maintenance used up
by the repair parts for the system in question.

The value of D(Qj,rj) is given by

L, r.) = . + L. o= PD.T. ., T
D(ijrj) (Qj+1)/2 Ty o= PyTy + B(Qj,rj),
where
. ) = L V. (v.:0. .
B(Qj'rj) y.=0 YJ‘PJ (yj Qj'rj)
3
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is the expected number of backorders, given the inventory
policy (Qj'rj)‘ Hadley and Whitin [Ref. 8, p. 184] show
that
[+
B(Q,r) = (1/Q) I yIP{y+xr+l;pt) - P(y+r+Q+l;pt)].
y=0
B. OPTIMIZATION TECHNIQUE

1, Minimiziiig Cost Subject to a Required Expected {
Number of Unit Systems Up

Suppose it is required that the expected number of
unit systems up must be equal to or greater than ASS,

where As is the required availability with respect to

supply support, 0 < As £ 1, and S is the number of unit

systems. Further, suppose it is desired to minimize the
cost of expected on hand inventory needed to achieve
E(2) > AS. The problem may then be stated as _ .
N ~r
Minir ize I C.D(Qj,rj)

(rl, s 00 ,rN) j=l J
(Qll LI IQN)

subject to E(2) > ASS.

Finding the optimal solution to this problem for
(Qj,rjhv j=1,...,N is a formidable task due to the com-
plexity of the cost function and the function for the
expected value of 2 in terms of the Qj and rj” To
simplify the problem we have chosen to sét the values of
Q. by an operating level of supply in terms of days or

J
months of supply. Thus we set
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Q. = [ijo + .51, if [ijo + .51 >0,

1, otherwise,

where: [u] = The greatest integer equal to or less than u,

Lo
of supply.

The problem now becomes: given the values of Qj determined

as indicated above, find the vector (rl,...,rN) which
minimizes the cost function subject to the required level
of availability. We shall restrict~thé rj to be 2 - 1,
After computing the Qj values, the next step in the pro-
cedure is to compute a table of values of wj(yj; rj = ~1)
for all j. This table is useful in that the values of
wj(yj; rj) may be found for other values of r. as

]
follows:.

( rj+l
p.(0; xr.) =
J J u

-
=

wj‘u; -1), for Yj =0,

Ay.; ry) = Y. (y.+rr.+l; -1 £ .> 0,
by lyyr £y) = ¥y (y ey ) for y,

The number of values needed for each wj depend upon the
demand rate and the accurac¢y desired in the computations.
After the table of Y values is computed the next step is
to find a set (ri,.:.,rﬁ) of rj such that E(Zj),the
expected value of 2 with respect to part type 3j, is
equal to or greater than ASS, and such that Pr(zj=s;rj)

is concave for rj 2 r;. Each rj must be large enough

37
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to insure E(Zj) 2 AS since E(Zj) gives the expected
number of operating systems when evVery other type except j
is always in supply. E(Z) can not be greater than E(Zj)
because it is assumed that at any arbitrary time Z =min Zj.

J
Now E(Zj) is given by

S Saj-kbj
E(2.) = & I Vilysi xrs)e
J k=1 yj=0 373 J

Using this expression find the minimum rj such that

E(Zj) 2 ASS. (See Appendix A for a discussion of the need
to require each PJ;‘(Zj 2 k; rj) to be concave for rj;rg.)
After the set of initial values of the ry is found, a
marginal analysis technigque similar to the approach of Karr
and Geisler [Ref. §] and to one form of optimal redundancy
algorithm of Barlow and Prochan [Réf. 3, p. 166] is used to
find at each iteration the part type which yields the
greatgst‘increase in E(Z) for the increase in the cost of
the expected on hand inventory for that part type. On the

first iteration the ratio

i E(Z;rj+l) - E(Z;rj)
A, = ~
| Cj[Dj(rj+1) Dj(rj)]

is computed for each part type, where

P 2kir.+l
r(ZJ_k rJ )

1

I 2

E(Z;r.+1) =
J k
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The maximum over j of Aj is determined and the r.
corresponding to that maximum is increased by one. E(2)
is set equal to E(Z;rj+1) corresponding to this Jj. If
the new value of E(Z) is equal to or greater than A S,
the procedure stops; if not, a new set of Aj is computed
and the rj corresponding to the maximum over 3j of the
new Aj is inéreased by one. The procedure continues in
this fashion until the value of E(2) is equal to or

greater than A S.

2. Minimizing Cost Subject to a Required Probablllty
that at Least k Unit Systems are Up

Suppose that it is required that P{z > k} 2
n(k)’ and that it is desired to minimize the cost of

the expected on hand inventory needed to achieve this
probability. The general procedure for finding the optimum
vector (rl,...,rN) is the same as the E(2) > AS form
of the constraint with the following expections:

a. The initial rj values (ri,...frﬁ) are the
minimum values such that Pr(z2. 2 k) 2 Pmin(k) and
Pr(Zj > kjrj) is concave in rj for rj > rg.

b. At each iteration Aj is computed as

Pr{z 2 k;rj+l}-Pr{‘Z 2 k; rj}
by = e () - DT -

As in the first form of the constraint the r. associated

J
with the maximum Aj is increased by one at each iteration
until Pr(Zz > k) > Pin (k). Since Pr{z > k} is just one
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term of the sum over k in the expression for E(Z) the
computational effort at each iteration is much reduced for
this form of the constraint, particularaly if the number

of unit systems S is large.

C. NUMERICAL ANALYSIS AND DEQELOPMENT OF FORTRAN PROGRAMS
Twe FORTRAN programs, ohe for each form of the constraint

have been develoéed.and run for several sample problems on

the Naval Postgraduate School's IBM 360 computer. The pro-

grams are very similar, and both use identical versions of

the followiné subprograms: PSITAB, which .computes a table

of values of wj(y;r. =-1) for j=1,...,N; PRZJK, a

J

function subprogram which computes Pr{Zj > k;r.}; EBU, a

- ]
function which -computes the expected number of backorders
‘for part type 3j give that the reorder point is rj}
PPT, a function which computes individual terms gf the
Poisson probabiiity mass function; and PCUMT, which computes
complementary cumulative terms of the Poisson distribution.
With the IBM 360 it.was found necessary to do the
arithmetic in double precision because the single precision
round-off errors for repeated multiplications were excessive.
The table of lpj(y;rj = -1) wvalues was, however, stored
as a single precision array to conserve storage space. When
values from this table were needed they were converted to
double precision with the standard function DBLE.

Subroutine PSITAB stores the computed values of

tpj(y;rj = -1) in an array called PI(J,K), where
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PI(J,K) = ‘x’J(k-—l;rJ = -1).

The array size is (N,100), where N is the number of
different part types; however, for each J only values
of PI(J,K) for K 1less than or equal to KMAX(J) are

computed, where

KMAX(J) = min J100, largest K such that
PI(J,K) < 10”12

PI(J,K) for K greater than KMAX(J) are set to zero.

For part types with low demand rates the number of values

of PI(J,K) computed is much less than 100. ‘The array
size used in the programs permits handling demand rates
up to about 50 without significant truncation of the distri-

bution of Yj'

l. Program EZIMIN

Program EZMIN computes the optimum xr vector sub-
ject to a required minimum expected value of the number
unit systems up. The main program reads the input data,
writes the system parameters and the requiréd availability,
and calls subroutines PSITAB, INITAL, and OPTIMR. Sub-
routine PSITAB computes the PI(J,K) array as discussed
above. Subroutines INITAL computes an initial set of 'r,
values, r},...,r}, each of which satisfies the following

conditions: Pr(zj = S;rj) a concave function of rj for

r. 2 r¥;
o

E(Zj) = Pr(z. > k;r¥) > A_S.

1 J J° — s

Il mtn

k
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Subroutine OPTIMR uses the marginal analysis technique
previously discussed to find the optimal r vector.

2. Program PKSMIN

Program PKSMIN computes the optimum x vector
subject to a required assurance that at least k out of
S unit systems are operational. This program differs from
program EZMIN .only in the following respects. PKSMIN Main
calls subroutine INTLZ instead of INITAL and subroutine
OPTMZ instead of OPTIMR, Subroutine INTLZ finds an
initial set of Xy values ri,...,rﬁ such: that Pr(ijk;rﬁ
is concave for ¥ 2 r¥ and such that Pr(zj > k;rg) 2P

Subroutine OPTMZ computes the optimum r vector subject to

the required assurance that Z be equal to or greater than

.k.

3. Flow Charts

Flow charts for program EZMIN .are presented in
Appendix B. Flow charts for program PKSMIN are presented

in Appendix C.
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IV. EXAMPLE PROBLEMS AND DISCUSSION OF RESULTS

A. DESCRIPTION .OF THE EXAMPLE SYSTEM

The example system consists of 50 105-mm recoilles
rifles, model M40Al. Several factors made this system a
convenient example, First, the total number of repair
parts is small enouéh so that the FORTRAN programs developed
for solution of the two alternate formulations of the prob-
lem can be used without modification on the IBM 360 G-level
computer available at the Naval Postgraduate School.
Second, Department of the Army Technical Manual 9-1015-221-35
[Ref. 11] contains data fxom which failure rates may be
estimated. Third, actual demand data for a six month
period for 62 weapons used in training heavy weapons infan-
trymen at Fort Ord, California, were made available to ‘the
author by the Fort Ord Post Maintenance Section. Finally,
price data were available from the microfilm Army Master
Data File Selected Management Data File [Ref. 111.

The parts list in TM 9-1050-221-35 contains 287 different

Federal Stock Numbers (FSN). Of these only the 159 FSN

which were indicated as. being combat essel..ial were used
for the sample problems. By limiting consideration to
only combat essential parts we insure that some of the
assumptions of the model are more nearly satisfied than if
all part types were considered., For example; the model
assumes that for each part type 3j there is a positive

number bj which is the minimum number of working parts of
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type J needed for the unit system to be capable of per-
forming its function. A part would not be combat essential
if bj were zero. Thus the assumption that the unit system
is a seéries of k-out-of-n structures and that the possible
states are zero or one is more nearly true if the unit
system consists only of combat essential parts.

The Federal Stock Number, the number of applications

‘per unit system, and data for estimating failure rates

were obtained from columns 2, 4, andl 6, respectively of
Section 2, Appendix B, Ref. 10.
B. SAMPLE PROBLEM 1 - REQUIRED EXPECTED NUMBER OF UNIT
SYSTEMS UP CONSTRAINT
The. fixrst sample problem was computed for the reguired

expected number of -unit systems up form of the constraint.

- Table I lists a summary of the input data and reswlts for

this problem.

TABLE I

SAMPLE PROBLEM 1 -~ SUMMARY OF INPUT DATA AND COMPUTED RESULTS

NUMBER OF UNIT SYSTEMS 50
~ NUMBER OF PART TYPES 159

INPUT REQUIRED AVAILABILITY 0.95
DATA OPERATING LEVEL 1.0

ACTIVITY LEVEL 1.0

- ZXPECTED NUMBER OF =

OPERATIONAL UNIT SYSTEMS 47.58
COMPUTED EXPECTED COST OF =
RESULTS ON HAND INVENTORY $418.04

NUMBER OF ITERATIONS OF

MARGINAL ANALYSIS PROCEDURE | 295
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The above data show that for the system consisting of
50 weapons with 159 part types and a required availability
of 0.95 program EZMIN computed an r vector with an
associated expected cost of on hand inventory of $418.04.
The computed value of E(Z) is 47.58, which indicates that
the marginal analysis technique cvershot the required
expected number of systems up by .08, since the required
expected number was 50 x 0.95 = 47.50,

Table II lists the input parameters and computed
results for each FSN. Parts are listed in Federal Item
Identification Numbexr (FIIN) sequence, because they are
listed this way on the Army Master Data File [Ref. 1ll].

The FIIN is the last seven digits of the Federal Stock
Number. The data cards were sorted into this, sequence to
facilitate determination of unit prices. The columns of
Table II contain the following: 3j, the sequence number;
FSN, the Federal Stock Number; A = a0 the number of
applications .of part type 3j on each unit system; B =’bj,
the minimum number of part type J needed for the unit
system to be up; C = Cf’ the unit cost of part type j:

N

RHOHAT = ., the failure rate for paxt type 3j; RHO = p, =

[ %

Sajaj, the pooled demand rate for all parts of type Jj in
the system; TAU = Tj' the procurement lead time for part
type j; Q = Qj’ the order quantity; R ='rj, the reorder
point; EB = B(Qj,rj), the expected backorders for part type'
j; and EOH = D(Qj,rj), the expected on hand inventory for

‘part typé J
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C. SAMPLE PROBLEM 2 - REQUIRED ASSURANCE AT LEAST K UNIT
SYSTEMS UP CONSTRAINT

The second sample problem was computed for the required
assurance at least k unit systems are up form of the
constraint. Table III lists a summary of the input data

and results for this problem.

TABLE III

SAMPLE PROBLEM 2 - SUMMARY OF INPUT DATA AND COMPUTED RESULTS

NUMBER OF UNIT SYSTEMS 50

REQUIRED NUMBER OF UNIT 47
SYSTEMS UP
INPUT REQUIRED ASSURANCE 0.90
DATA OPERATING LEVEL 1.0
ACTIVITY LEVEL 1.0
PROBABILITY AT LEAST K 0.91
UNIT SYSTEMS ARE UP
EXPECTED NUMBER OF 47.46
COMPUTED | UNIT SYSTENS U
RESULTS EXPECTED COST OF ON $387. 88
HAND INVENTORY ,
NUMBER OF ITERATIONS OF 348
MARGINAL ANALYSIS PROCEDURE

The above data sliow that for the same system considered
in Problem 1 with a required assurance of 0.90 that at least
47 unit systems are up program PKSMIN computed an x vector
with an associated expectéd cost of cn hand inventory of
$387.88. The program overshot the required probability
by 0.0l since the computed probability is 0.91 and the re-

quirement was 0.90. After the r vector which met the

52




constraint was computed the program computed the resulting
value of E(Z), the expected number of unit systems up.
It is interesting to note that the expected number of unit
systems up very nearly meets the requirement of Problem 1,
and the expected cost of on hand inventory is algo about
the same as for Problem 1. The computer execution time for
Problem 2 was about 19 seconds compared to slightly over
four minutes for Problem 1.

Table IV lists the input paramaters and computed results
for each FSN. The column headings are the same as for
Froblem 1.

D. EXDECTED J0ST OF ON HAND INVENTORY AS. A FUNCTIQON OF
REQUIRED AVAILABILITY

1. Expected Cost Versus Required Expected Number of
Unit Systems Up ’ i

Program EZMIN was run for ten values of Ay = 0.90,
«.+70.99 in order to develop a functional relationship
between the first form of the availability requirement and
the expected cost of on hand inventory. Table V summaries
the results. In addition to the -expected cost of on hand
inventory the table lists the number of iterations of the
marginal analysis procedure required to find a solution and
the number of reorder points which were less than the mean
lead time demand for each level of As. A reorder point

less than the mean lead time demand is equivalent to a

* negative safety level. For many of these the computed order

quantity is one and the computed reorder point is minus one.
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This (Q,r) implies that the part is not stocked by the
maintenance unit but is ordered from the source of supply
as demands occur.

The data show that expected costs of on hand inventory

3 , rise very steeply as the required level of A, approaches
g unity.
§ i
é TABLE V
,\ | EXPECTED COST OF ON HAND INVENTCRY VERSUS REQUIRED AS
No. of
’ Negative
A No. 9f Safety
S E(C) Iterations Levels
0.90 $16.80 31 156
0.91 $22.02 64 151
0.92 $38,14 67 143
0.93 $79.57 140 123
0.94 '$168.64 141 104
0.95 | $418.04 295 73
0.96 $645,76 238 , 41
0.97 $1225.36 359 19
0.98" $1619.00 322 7"

0.99 $2406.83 386 2

Figure 1 plots the expected cost of on hand inventory

E(C) as a function of As.
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Figure 1. Expected Cost of on Hand Inventory E(C)
as a Function of Required Expected Fraction -of
Unit Systems Up
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2. Expected Cost of On Hand Inventory Versus Required
Number of Unit Systems Up with an Assurance of 90
Per Cent’ -

Program PKSMIN was run for six values of k = 45,
««+:50 at a required assurance of 90 per cent in order to
develop a functional relationship between the required value
of k and the expected cost of on hand inventory at thig

assurance level. Table VI summaries the results.

TABLE VI

EXPECTED COST OF ON HAND INVENTORY VERSUS REQUIRED
NUMBER UNIT SYSTEMS UP WITH 90 PER CENT ASSURANCE

No. of
Negative
No, of Safety
k E(C) Iterations Levels
45 $29.07 103 150
46 $84.97 102 122
47 $387.88 177 85
48 $1117.47 218 49
49 $2235.32 278 11
50 $3519.92 303 0

Figure 2 plots the expected cost of on hand inventory

E(C) as a function of the required number k of unit

~ systems up with 90 per cent assurance.
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Figure 2. Expected Cost of on Hand Inventory E(C)
as a Function of the Required Number k of
Unit Systems Up with 90 Per Cent Assurance
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V. OBSERVATIONS AND CONCLUSIONS

A, OBSERVATIONS

1. Marginal Analysis may Produce only a Near-Optimal
Solution

The marginal analysis procedure presented in
Section III sometimes overshoots the optimum solution.
That is, the x vector found using the procedure sometimes
results in a highér than required availability and a higher
expected cost of on hand inventory than needed to satisfy
the constraint. This behavior of marginal analysis was
observed during the hand calculation of the solution to
a small problem with four unit systems and four part types
where the constraint was E(Z) 2 3.6. Marginal analysis
yielded an E(Z) of 3.709 and an E(C) of $53.87. It
was possible, however, on the last iteration to achieve
an E(Z) of 3.%01 at a cost of $48.63 by increasing a
different * thgn the one associated with the maximum |
Aj. A dynamic programming procedure would overcome this j
shortcoming, but dynamic¢ programming rapidly becomes compu- |
tationally cumbersome as the number of decision variables
increases. In thé sample problems discussed in Section IV
there were 159 decision variables, and 4in many possible
applicatiqns of the model the number would be in the
thousands. Thus the simple marginal analysis procedure may
be more computationally feasible than dynamic programming

for many applications of interest. Further, the relative
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differences between the optimal solution and the marginal
analysis solution tends to decrease as the size of the
problem increases.

2. Program PKSMIN is Much Faster than Program EZMIN

Sample problems 1 and 2 in Section IV resulted in
about the same values of E(2) and of E(C). For problem
1 E(2) was 47.58 and E(C) wds $418.04. For problem 2
E(2) was 47.46 and E(C) was $387.88. On the IBM 360
program EZMIN required over four minutes to compute the
results for problem 1, while program PXSMIN solved problem
2 in nineteen seconds. The reason for this difference is
that E(2) a more complex function than Pr(Z 2 k). For
a given r vector E(2Z) is the sum over k f£from one to
§ of Pr(Zz 2Xk). A comparison of the JMAX segments of
subroutines OPTIMR and OPTMZ shows that OPTIMR requires
more computations at each iteration (See Flow charts Béa
and C3a.)

3. Functional Relationships of Expected Cost Versus
Remired Availability are Readily Obtained

The functional relationships of expected cost of
on h;ﬁd inventory versus availability discussed in Section
IV were obtained by simply adding a DO loop to the two
nain programs. Thus for E(C) vVersus A the value of
A, was initially set to 0.89, and at each iteration of the
DO loop A, was increased by C.0l for ten iterations.
Similarly for E(C) versus k at the 90 per cent assurance
level k was initially set at 44 and incremented by one

at each iteraticns for six iterations.
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Using the functional relationships of E(C) vecsus .
availability we can estimate the maximum availability which
can be achieved if there is a constraint ocn E(C). Suppose,
for example, we desired to maximize As subject to E(C)
< $1000.00. From Table V in Section IV we see that the
maximum A would ba between :96 and .97. To determine
maximum A, more precisely and to determine the associated
r vector we could run program EZMIN fcr a series of valles

of AS,'say .961, .962, ..., .969. The resulting E(C)

. for one of these As values should be very close to

$1000.00.

Computing time in developing the E(C) versus avail-
ability functions. can be conserved if at each iteration
after the first the starting values of the rj are ‘the
final values compunted on the previous iterdation, This can
be: accomplished if the initializi;g‘subroutines INITAL and

INTL? are skipped on the second and subsequent iterationms.

This technique reduces the computing time to about half

that needed if the initializing 'subroutines are called at

each iteration.

B. CONCLUSIONS

1. Advantages of the Model

The model provides the first technique of which
the author is aware.'for explicitly taking into account
system availability in the determination of continuous
review inventory policies for repair parts. The model

allows for variable safety levels and yields a set policies
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where the ratio of marginal availability to marginal cost

of inventory investment is approximately the same for all
part types. The result is that the model tends to favor
low-~cost, high~demand items with relatively high safety
levels. High-cost, low-demand items are less well protected.
All items are, however, well enough protected to- insure,
under the assumptions of the model, that the availability
requirement will be met.

Compared 'to models which might more realistically
represent the "real world" the one presented here possesses
the advantage of computational feasibility. Programs |
EXMIN and PKSMIN produce solutions in a reasonable amount
of time. Refinements in the programming could probably
improve run times.

2., Limitations of the Model

The limitations stem primarily from the assunptions
which were made for the sake of mathematical simplicity.
For example, the constant lead time assumption is not
usually true. Lead times can have considerable variability.
Le. i+ time variability will tend to decrease the actual
availabilities achieved compared to those predicted by the
mcdel. On the other hand the model does not consider
the fact that requisitions for parts which are causing a
unit system to be down have a higher :priority and thus a
shorter lead time than normal replenishment requisitions:
This fact will tend to make achieved availabilities higher

than those predicted.
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The optimal cannibalization assumption is seldom
completely true. The significance of this assumption
decreases, however, as the required availability increases,
since &t higher availability levels we expect fewer back-
orders and therefore fewer occasions for cannibalization.

The significance of the assumption of zero or one states

for unit systems will depend upon the stringency of the

serviceability criteria used to determine whether a unit

system is up or down. The more stringent the criteria,
the more parts will have bj equal to aj. Parts with
bj equal to aj will generally be better protected than

parts with bj less than ay. The most stringent criteria

possible would be that every part on the unit system must

be working if it is to bé counted as being up. Thus'we

can see that the inventory policies computed by this

model and the resulting expected costs of on hand inventory
are highly dependent upon the serviceability criteria tor
the unit system,

' The assumption that parts are replaced immediately with
zero lead time.makes it necessary to correct the avail-
abilities computed by the model for down time due to finite
time to repair.

3. Uses of the Model

The model was developed for use in determining
direct support inventory policies for repaire parts for a

given population of a particular major item.

68




e e

oy

RN ST S P o)

=,

L Fakvins

Another use which suggests itself is determining
optimal maintenance floats. Suppose it were required that
at least k unit systems be up with probability .90.
Assume that the capability of the maintenance unit to make
repairs, given that needed parts are available,is fixed.
Then the probability that k wunit systems are up is
determined by the total number S of unit syéfgms and
the inventory policies for repair parts. The quant}ty
S - k 1is called the maintenance float. An intgresting
problem is determining the optimal level of the\main%enance
float. The model presented in this thesis could be used to
estimate the optimal float level as follows. Compute the
expected cost of on hand inventory needed to assure with
probability .90 that k unit systems are up with Zero; one,
two, ... unit systems in the maintenance float. Then .choose
that level of maintenance float which minimizes the sum of
the cost of the float plus the cn hand inventory.

4. Extensions

A number of possible <&xtensinns of the model

appear to be worthy of investigation. For example, relax-
ation of the assumption that all unit systems are identical
would be useful. A next higher level of complexity of the
system would be one in which there are two types of unit
systems. For example, one type of unit system might be a
particular type of weapon. The other unit system might be
a piece of fire control equipment which controls the fires

of several weapofis. If a fire control unit is down all the
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weapons it controls are also down., Application of the
approach of this model to optimal inventory policies for
such‘a system seems to offer interesting possibilities.

] In any case it is hoped that the model presented here
will prove useful in the development of system availability-
: oriented ope&ating policies for military repair parts

i inventories.
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APPENDIX A
CONVENXITY CONSIDERATIONS

In order to insure the optimality of the r vector
found using the procedure outlined in Section III it is
necessary that the cost function be convex and that the

region in r-space defined by the constraint be convex.

1. The Cost Function
The objective function in the model presented in
this paper is the expected cost of on hand inventory,

which is given by

D(C) =
J

[ I or -4

. CjD (Qj,rj).

Since the Q. are fixed by the operating level of supply
policy as des\ tribed in Section III, we avre concerned

only with convexity with respect to the rj, j=1,...,N.
Further, since E{C) is a sum of terms each of which is

a function only of rj, E(C) is convex if each Dj(Qj,rj)
is convex. Since Qj is fixed let us drop it as an argu-

ment; also let us fix j and drxop the subscript. Hadley

and Whitin [Ref. 8, p. 184] show that
D(x) = (Q + 1)/2 + r + B(Q,x),

where B(Q,r) is the expected bacKorders, given a (Q,r)

policy. D{r) is linear in r except for the B(Q,r) term,
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Thus D(r) is convex if B(Q,r) is convex in r. Ayain,
since Q 1is fixed, let us drop it as an argument. Hadley

and Whitin [Ref. 8, p. 184] show that

B(r) = (1/Q) I yI[P(y+r+l;u) - P(y+r+Q+l;u)l.

y=0
Let
A_B(x) = B(r+l) - B(r),
and
Af_,B(r) = A B(r+l) - AB(r).

D(x) is convex if AiB(r) <0 for al: r., Since the par-
améter | is fixed for fixed 3j, 1let us further simplify

the notation by letting

P(x) = P(x;qn),

p(x) = p(xip).

Further, let

B*(r) = 9B(xr).

Then D(r) is convex for r > r* Aif AiB*(s) 2 0 for all

Now

v
H
*

r

5
y=0

ArB*(r)

P (y+r+2) - P(y+r+Q+2)
YI_p(y+r+l) + P(y+r+Q+l)

(]

L ylp(y+r+Q+l) -~ p(y+r+l)].
y=1
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Note that we nave dropped the term for y =0

contributes nothing to the sum.

Now
‘2 *
ALB (x)

|

where
i
. Ap(x) =
g
i
1 -

Thus

AiB*(r)

[PUCTVRRRRR £

; p (y+r+Q+2) - p(y+r+2)
g1 Y|P (HTQrL) + Ply+rel)

N y [Ap (y+r+Q+1) - Ap(y+xr+l)])

[0}
N8

Yy

p(x+l) - p(x)

11(x+l) ' X ol

(x+1):  ~  xI

[u - x -1

x + 1 1 plx).

since it

_ > U=y-r=-0-2 _U-y-r=2
= 51 y[—y-%é-ﬁ_p(ywwﬂ) Srris P ytrrl)]

Y
.y y[ytrt2-u : _yrQe2-u
(L YUgrrrz PUriel) - Siae (rheka)
(24 3-1) (£+Q+3-u) .
Trey P2 - TR (rhh2)
2 (rx+4-1) 2 (x+Q+4~1)
+ ~—§:Z—~—p(r+3) —E:EIZ——— p(r+Q+3)
(r+0+3)
+ (Q+l)-—§—rQ-_*_—§—p(r+Q+2) = e
+
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o 0-1 0
q . +2- -
= I y(£%¥§%iﬂ)p(y+r+l) + Q (EiXig—BJp(r+y+l).

y=1 v=0Q r+y+2

LU TT O Y

Now every term in this series is non-negative if r > u-3.

Thus D(r) 1is convex in r for r = yp=-3. Furthermore,

e o b S

numerical. calculations show that for values of u up to

L

B 40 that if Q > u-.5 then D(r) is convex for > -1.
This numerical result is probably due to the fact that the

t mode of the Poisson probability mass function is approxi-

mately u -1, which means that the most negative values

of (x+y+2-u,/(r+y+2) in the series are multiplied by
small values of p(x;u). When r > -1, all terms in the
series for y > pu - 1 will be positive. Thus it is
likely that the sum of the positive terms in the series

is greater than the absolute value of the sum of the terms

for which y + 1 - u is negative.

Thus, as far as the cost function is concerned, we can
be sure that the function is convex in r for all
E r2yu-3, where M = W;,...,ly, and we have reason to
¥ believe the function is convex for x > - 1 when sz_uj-.&
j=1,...,N.

2. The Constraint Function

E The two alternate forms of the constraint functions

are, first, a required expected number of operational unit

systems, expressed by

S N (Sas~kb.
¥ 1 .5 J. J

Y.(y.:ir) 2 A S
k=l j=1 y =0 173 s” !
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and second a required probability that at least k unit
systems are operational, expressed by
N Saus-kb.

o
1 z Wj(y;rj) = Pmi (k) .

‘=1 v .=0 n
J YJ

If the constraint region is to be convex, the above func-
tions must be concave functions of r = (rl,...,rN). Note
that the left hand side of the first constraint is the sum
over k of terms cf the same form as the left hand side
of the second constraint. Thué,if we can show the con-
ditions for concavity of the left hand side of the second
constraint for a general k, we can easily show the
conditions for concavity of the first constraint.

The difficulty in showing thHe concavity of the second
form of constraint is that it is not a separable function
of the ry. It can be transrormed into a separable function
by taking the logarithm, in which case it becomes a sum of

terms, each of which is a function cf only one rj, i.e.,

N
In[Pr{Z > %k}] = % In[Pr{z. 2 k}1,
3=1 ?
where
Saj—kbj
Pr{z. >k} = ¢ Y. (Yaira).
j y.=0 34373
3
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sy . AL SR

e

Let

- N
f(r) = Pr{2 > k;x}, = N £f.(r.),
r r 5Lyt

£.(x.) = Z. > k;r.
J(rj) Pr{ j 2 k rj},

¢
)

¢(x) = 1In £(x),
¢j(rj) = 1n fj(rj).

Now it can easily be shown that if fj(rj) is concave,

¢j(r

j) is also concave, and thus ¢(x) is concave. Un-

fortunately, the concavity of ¢(r) does not imply the

concavity of f£(r). Now consider

Saj-kbj
f * * = L] L] ; L] L]
J(rj) y§=0 ‘Pj(yJ rj)
J
I“e/-.t.
M= . = kb,
Saj k 5
then

f. = . 0; . +ooc +‘y- M;r- .
J(rj) WJ( rj) J( J)

In section III we showed that

Y, (0;r,) = AyL—-1
3(0 r]) z lil"J(Yj ).

!
Y. (v.ir.,) = ¥.(y., + . + 1; - 1 . > 0. '
J(yj rj) J(yJ 3 ), YJ
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Thus we have

; ra+l M

1 ) £, .) = Y.(u;-1) + ¥o(y.+r.+1l; -1
é : J(rJ) u£0 J(u ) ygl J(yJ Ts )
M+rj+l
: . = I ¥.(u;-1).
L w0
; . Now let
' : A, £.(x.) = £, (r.+l) = £, (r.
i : 3 3( J) j(rJ ) J(rj),
then
‘ ' M+rj+2 M+r.+1
1 - A, £(ry) = T ¥.(ui-1) - £ 3y, (u;-1)
¢ | 5 3 u=0 J u=0 J

‘Pu M"'r -+2;—l .
J( J )

Let

Hh
il

A £(r.+l) - A f(r.).
. 5 d 5o

then

H
]

Wj(M+r+3;—1) - Wj(M+r+2;-l)

P (Mbri+3) - P(MHQs+r.+3)
(1) ~ 73 373
=P (M+r+2) - P(M+Q+r+2)

(1/Q) [p (M+Q+r+2) - p (M+xr+2)]

Now fj is concave for all r, > rg if the expression

in brackets above is < 0 for all rj > rg. Thus we seek

rg such that for all r, 2 rg
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tr, +2) > +Q.+x .+
p (M 4 ) 2 p(M QJ Ly 2)

or

(M+r,+2) _ (M+Q . +r.+2)
My 37T Wy s Mk HN
Mz ¥ T = (MFQ ¥ 27 ]

or

. Mtxr.+Q.+2)1
uQJ ‘ ( T Qj )
- (M+rj+2)! *

The right hand side of the above inequality is an increasing

function of rj, Qj'

operating level  olicy used within the Army is at least as

and M. It is usually true that the

many days of supply as the procurement lead time. This
means that Qj > uj. Assume this is true. Now if k = S

and aj = bj’ then M = 0. If fj(rjfk=S) is concave,

fj(rj;k<s) will also be concave, since if the rngéguality
holds for M= 0, it will hold for M>0. Let M = 0. Then

the inequality becomes

Qj (r.+Q.+2)!
(rj+2)!

For example, if rj = -1 and Qj = 1, then uj must be

equal to or less than 2. In other words, for uj <2, fj(rf

is concave in rj for all rj > -1, Qj >1, and k £ S.
To insure the concavity of fj(rj) for u>2, in the

FORTRAN program for the E(2) = ASS form of the constraint,
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the subroutine INITAL finds an initial set of r. such that

the concavity conditions for k= S are satisfiied for «r

3
equal to or greater than the initial r.. Similarly, in

the FORTRAN program for the Pr(zZ=k) = Prin form of the

]
such that each Pri{Z, = k; rj) is a concave function of

constraint, subroutine INTLZ finds an initia; get of r
3
rj for rj equal to or greater than the initial value.

The soluticn procedure employed in the computer programs

-

thus insures that each fﬁ(rj) is concave in r in the

3
region that the marginal analysis procedure  searches for
N
an optimum. The question of the concavity of £f(r)= 1 ﬁﬁrj)
j=1

remains open. To date the numerical results have not inid-
cated that there is a problem, i.e., the numerical results,

are quite reasonable. No proof, however, of the concavity

of £(r) has been found.
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APPENDIX B

FLCW CHARTS FOR FORTRAN PROGRAM EZMIN

FORTRAN program EZMIN was developed to solve the problem

of finding the vector r which minimizes the expected cost
of on hand inventory subject to a required expected number

of unit systems up. This appendix contains flow charts for
the main program and the following subprograms:

A Subroutine PSITAB, which computes a table of values of

PI(J,Y) for 3 =1,...,N, and Y =1,...,100, where

PI(J,Y) = YJ(Y-l;rU =-1) .

Subroutine INITAL, which computes a .set of initial
values of Xy such that E(Zj) 2 E(2Z) i 3= 1oaeo N,

Subroutine OPTIMR, which uses a marginal analysis tech-
nigue to find an optimal r vector.

Function PRZJK, which computes Pr{zj ='k; rj}.

Function EBO, which computes E(Yj; rj).

Function PPT, which computes individual terms of the

Poisson probability distribution.

Functicén PCUMT, which computes complementary cumulative

terms of the Poisson probability distribution.
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START

READ:

NO. OF UNIT SYSTEMS
NO. OF PART TYPES

S
N
AZ

OL = OPERATING LEVEL
ALEVEL = ACTIVITY LEVEL

= REQUIRED AVAILABILITY

!

“)

\WRITE: S, N, AZ, OL, ALEVEL

i

READ: ., b.
\ AD a], 3

'

s e R

, Cup Tuy Puy FSNL., 3 =1,...,N //

Q. = max{[uj + .5],1}

L'
Z PSITAB \
COMPUTES TABLE OF PI(j,k) = j(k—l;rj,= - 1)
FOR j=1,...,N; k=1,...,100
a
Figure Bl. Flow Chart for EZMIN Main Program
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T A TP (s o ey

// INITAL

COMPUTES INITIAL r., j =1,...,N SUCH THAT
R(2,) = AZ¥S AND Pr(zj3= Sirj) IS CONCAVE IN xg

l

z// OPTIMR v\\.

-\

COMPUTES r VECTOR SUCH THAT
E(C) IS MINIMIZED SUBJECT TO E(2) = AZ*S

STOP
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yes .
% ()

K 2%

PI(J,K) =

0.

no

PI(J,K) = p(K"‘lipJTj)

K >uj
and PI(J,K)

B e e T R —

Figure B2,

RETURN

Flow Chart for Subroutine PSITAR
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.

5 SUM = 0 .
q IHI = Qj (g)
4 , 3

{ o 40

. I '>< I « 1,IHI >
{ |

A

: |

~ ' SUM = SUM + P(I;p.t.)
3 1 ‘ ij
p —_— € — — = = - < —i

J PI(3,1) = 1 - SUM/Q,

D

yes

PI(J,K) = [P(Kfl;pjwj) - P(K~1+Qj;pjrj)]/oj

PI(J,K) = 0
K>,
i M3
) & PI(J,K)
. ‘ﬁi0~12
3

Figure B2. Continued
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Flow Chart for Subroutine INITAL

A
| !
, = =1

I Ty
| P, = Pr(Zj = S;J:j = 0)

P, = Pr(Z2. = S;r, = 1
| {2y = Sixg = 1)
1
| Y
| 1
| no PO B Pl
! e P, = P,
| P, = Pr(Zj=S;r3+3)
! r, =r, +1
| J J
|

N

|
l S
| E{Z.) = I Pr(Z.2k;r.) *
l | k=1 J J
| -
|
| E(Zj)i no r. =r. +
| AZ*S J “J
|




START

g N
COMPUTE Pr(2z2k) = 1 Pr(zjzk;rj)
j=1
FOR k =1,...,S

~E(2) . Pr(Z>k)

|

v

COMPUTE EBj = EBO(rj) ij(Y?fj)r j=1,...,N

—

"
g =
— I o g I

COMPUTE DTcos'rj = Cj(l + EBO(rj+l) - EBj), j=1,..0.4N

ITER = ITER + 1

!

Find jmax = {j*: A.* = max A.}
J 3 J
E(Z;rj+1) - E(Z)
where Aj = DTCOSTj
3 and s Pr(ijk;rj+l)
i E(Z;rj+l) = kElPr(Z,?__k) Pr(zjikirj) .
set E(2Z) = E(Z;rjmax + 1)
(See Figure B4a for details of this block)

®

Figure B4. Flow Chart for Subroutine OPTIMR
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LI 1) 4 S sl

P—

P

e e

7

Pr(Z. ?k:r

jmax

+1)

COMPUTE Pr(z=k) = P(2>k) Jmax
pr(zjmax I
FOR k = 1,...,5

k;xr

jmax)

rjmax +1
Bjmax = EBO(rjmax)

DI‘COSTj = ijax(l + EBO(r

rjmax
E

jmax+l) -

EBjmax

)

©

COMPTE EOH, = [(Q.+1)/2 + r. + EB. - u. i = 1,...
3 [(QJ ,)/ L 3 ujl, j= l,e.0N

E(C)

1l
o=

C.*EOH.
i J J

k|

WRITE: ITER, E(2), E(C),

FSN., a. . ., D . \ .
( Jl, 3 bJI CJ' pjl pjr TJ' Q]

EBj’ EOHj\’ j = l, o.o,N)

T )
J

‘ RETURN ,

Figure B4. Continued
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KM = Sa:'l - iKb.-| + ry + 3

YeS | PRNEW = Pr(z>K)

no
PRNEW = Pr(z2K) [Pr(252K) + PI(J,KM)1/Pr(Z;>K)

508] EZTRY = EZTRY + PKNEW

DELTAJ
>DHOLD

no

yes
DHOLD = DELTAJ
JMAX = J

: EZSAVE =

EZTRY

Figure B4a. Flow Chart for JMAX Segment of OPTIMR
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e

KHI = SA. - kb. + . + 2
. it

KHI > KMAX(J)

i

l:w KHI = KMAX (J)

10 ‘\>
r"‘“"""><1<Y<=1iKHI J

|

|

| L4
l PRZJK = PRZJIK + PI(J,KY)
|

|

I

RETURN

Figure B5. Flow Chart for Function PRZJK
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s vy

) START

e

EBO = 0.

LC e el A

Y + 1
K=Y + rj + 2
EBO = EBO + Y*PI (J,K)

no

K > KMAX (J)

Figure B6. Flow Chart for Function EBO
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< START )

MU = RHO*T
— 1S
PPT = DEXP (-MU) no
1 - -
RETURN PPT = DEXP (-MU)
3 =
= I+« 1,IX

I
|
I
! PPT = PPT*MU/DFLOAT (1)
1
I
l

Figure B7. Flow Chart for Functiun PPT
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START

MU

RHO*T

PCUMT 1.D00 PCUMT = 1.D00 -

- DEXP (~-MU)

| N

RETURN

; § 4
SUM = DEXP (-MU)
PROD = SUM
IHI = IX-1
Y

’ 3
|"“"‘><I+1,IHI >
' l .

I

' PROD = PROD*MU/DFLOAT (I)
| SUM = SUM + PROD
,I

|

PCUMT = 1.D00 - SUM

RETURN

Figure B8. Flow Chart for Function PCUMT
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.subroutines:

APPENDIX C.
FLOW CHARTS FOR FORTRAN PROGRAM PKSMIN

FORTRAN program PKSMIN was developed to solve the prob-
lem of finding the r vector which minimizes the expected
cost of on hand ihventory subject to a required probability
that at least k unit systems are up. This appendix con-

tains flow charts for the main program and the following

g

Subroutine INTLZ, which compute a set of3ipitig1 values

of ry such that Pr(zj 2 k) 2 P(Z 2 k) . j§;14..,N.
Subroutine OPTMZ, which uses a marginal anéizéggftech-

nigque teo find an optimal r vector. o B
Program PKSMIN also uses subroutiné PSITAB aﬁa éunction

subprograms PRZJK, EBO, PPT, and PCUMT, flow charts for

which are in Appendix B.
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START

READ: S = NO. OF UNIT SYSTEMS
' KS = REQUIRED NO. OPERATIONAL
UNIT SYSTEMS
N = NO. OF PART TYPES
PKSMIN = REQUIRED ASSURANCE
OL = OPERATING LEVEL
3 ALEVEL = ACTIVITY LEVEL

WRITE: S, KS, N, PKSMIN, OL, ALEVE
’\'READ: aj’ bj, Cj’ pj' Tj' FSNj, j=l'-oo[’N4/

2 e

520 e S

¢ o 5
1 ~ j « 1,N
;: | l
. = | .
v | 0 =t.'a.6
| 3 373
I My T P37
A | Qg ={max [uy + .51, 1} 4
E |
|
1

% //Fk PISTAB ’ \\x
COMPUTES TABLE OF PI(J,K) = %j(kwl;r. = - 1)

J
FQR j-_-l,...,N;k:l,...,lOO

. Figure Cl. Flow Chart for PKSMIN Main Program




/ INTLZ ' \
/ COMPUTES INITIAL Ijo 3 = Ly... /N
SUCH THAT Pr(z’k:r;) > PKSMIN /
AND Pr(z;>KSir;) IS CONCAVE IN r,

| l

// OPTMZ *15&

COMPUTES r VECTOR SUCH THAT E(C) IS

MINIMIZED SUBJECT TO Pr(2>K) > PKSMIN

!L—

( STOP >

Figure Cl. Continued
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|
|
|
|
J
|
X
(]
AN
o
!—l
2

|
[ ¥
| rJ = -1
| Py = Pr(z;2Ks; ry = - 1)
| P. = Pr(Z, > KS; r. = 0
| pl p Ezj > KS ) 1;
e i
; |
F |
|
2 | Po = Py
§ i Py =Py
o P = Pr Z->KS; r‘
[ | 2T TR
. Vi_
! L 504
a' l J + l,N
|
s l \
l Pr(z, Ks)
P | ] no
? [ >PKSMIN i
ﬁ |
| ‘
yes
; } ~
; e e 504
RETURN

Figure C2. Flow Chart for Subroutine INTLZ
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< START I

\

N
COMPUTE P (2Z>Ks) = T Pr(ZjZKS)

ljl

[+ o}
COMPUTE EBj = EBO(rj) = I

y=1

ij(y;rj) j=1,...,N

l

COMPUTE DTCOST; = Cj(l + EBO(rj+l) - EBj),j = 1l,...,N

-1

ITER = 0

P{Z>K ves

>PKSMIN

no

ITER = ITER + 1

()
®

H

Find: Jmax = {j*: A.* = max A,
j {3 3 ? 3}'

Pr(22KS;r +¥) - P(22KS)

(See Figure C3a for details of this block)

where 44 = DTCOST '
and Pr(ijxs;rj+l)
Pr(22KS,ry+l) = Pr(22KS) —pr(zsp e
=373
set Pr(z>KS) = Pr(2>Ks; Timax + 1)

©

Figure C3. Flow Chart for Subroutine OPTM2
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%
N
% PY(Zypnay 2 KE) = PrlZypay 2 KS:Xmax™ L)
3
1
A ’ Timax = Tymax T 1
2 EBynax = EBO(rjmax)
v 7 = . -
? DfCOSijax Cimax (l+EBO(rjmax+l) EBjmax
; P (2>KS) 1O p‘l'
>PKSMIN
k
4
g
§ COMPUTE EOH, = [(Q.+1)/2 + x. + EB, - N.1,3=1,...,N
J J J J J
b l
|
t N
! E(C) = .% C,* EOH
| € = 35214 j ]
| !
- s N
S COMPUTE E(z) I I Pr(zj > k)
f k=1 j=1
|

«

! WRITE: ITER, P(Z>KS), E(Z), E(C),
(FSNjI ajl bj,' le pjr pjr Tjr le Rjr

EBj[ EOH‘j’ j :':“ 1'0.0,N

[

< RETURN )

Figure C3. Continued
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BIT

KLY

M =Sa., - KS*b. + r. + 3
44 j j

es

PKSTRY = Pr (2>KS)

PKSTRY = Pr(2Z2KS) [Pr(2,2KS)+PI(J,M)]/br (22KS)

DELTAJ = [PKSTRY-Pr(ZZKS)]/DTCOSTj

yes
no . .
DHOLD = DELTAJ
—» JIMAX = J
PKSAVE = PKSKMJN

Pr(2>KS) = PKSTRY

Figure C3a. Flow Chart for JAMX Segment of OPTMZ
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